1. Purpose

nag zero cont func bd (c05adc) locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation, extrapolation and bisection.

2. Specification

#include <nag.h> #include <nagc05.h>

```
void nag_zero_cont_func_bd(double a, double b, double *x,
                    double (*f)(double x), double xtol,
                    double ftol, NagError *fail)
```
3. Description

The routine attempts to obtain an approximation to a simple zero of the function $f(x)$ given an initial interval [a, b] such that $f(a) \times f(b) \leq 0$. The zero is found by a modified version of procedure 'zeroin' given by Bus and Dekker (1975). The approximation x to the zero α is determined so that one or both of the following criteria are satisfied:

(i) $|x - \alpha| <$ **xtol**,

(ii) $|f(x)| <$ **ftol**.

The routine combines the methods of bisection, linear interpolation and linear extrapolation (see Dahlquist and Bjorck (1974)), to find a sequence of sub-intervals of the initial interval such that the final interval $[x, y]$ contains the zero and is small enough to satisfy the tolerance specified by **xtol**. Note that, since the intervals $[x, y]$ are determined only so that they contain a change of sign of f, it is possible that the final interval may contain a discontinuity or a pole of f (violating the requirement that f be continuous). If the sign change is likely to correspond to a pole of f then the routine gives an error return.

4. Parameters

a

Input: the lower bound of the interval, a.

b

Input: the upper bound of the interval, b. Constraint: $\mathbf{b} \neq \mathbf{a}$.

x

Output: the approximation to the zero.

f

The function **f**, supplied by the user, must evaluate the function f whose zero is to be determined. The specification of **f** is:

double f(double x) **x** Input: the point x at which the function must be evaluated.

xtol

Input: the absolute tolerance to which the zero is required (see Section 3). Constraint: $xtol > 0.0$.

ftol

Input: a value such that if $|f(x)| <$ **ftol**, x is accepted as the zero. **ftol** may be specified as 0.0 (see Section 6).

fail

The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE 2 REAL ARG EQ

On entry, $\mathbf{a} = \langle value \rangle$ while $\mathbf{b} = \langle value \rangle$. These parameters must satisfy $\mathbf{a} \neq \mathbf{b}$.

NE REAL ARG LE

On entry, **xtol** must not be less than or equal to 0.0: $\mathbf{xtol} = \langle value \rangle$.

NE FUNC END VAL

On entry, $\mathbf{f}(\langle value \rangle)$ and $\mathbf{f}(\langle value \rangle)$ have the same sign, with $\mathbf{f}(\langle value \rangle) \neq 0.0$.

NE PROBABLE POLE

Indicates that the function values in the interval [**a**,**b**] might contain a pole rather than a zero. Reducing **xtol** may help in distinguishing between a pole and a zero.

NE XTOL TOO SMALL

No further improvement in the solution is possible. **xtol** is too small: $\mathbf{xtol} = \langle value \rangle$.

6. Further Comments

The time taken by the routine depends primarily on the time spent evaluating **f** (see Section 4).

6.1. Accuracy

This depends on the value of **xtol** and **ftol**. If full machine accuracy is required, they may be set very small, resulting in an error exit with error exit of **NE XTOL TOO SMALL**, although this may involve many more iterations than a lesser accuracy. The user is recommended to set **ftol** = 0.0 and to use **xtol** to control the accuracy, unless there is prior knowledge of the size of $f(x)$ for values of x near the zero.

6.2. References

Bus J C P and Dekker T J (1975) Two Efficient Algorithms with Guaranteed Convergence for Finding a Zero of a Function *ACM Trans. Math. Softw.* **1** 330–345. Dahlquist G and Bjorck A (1974) *Numerical Methods* Prentice-Hall.

7. See Also

None.

8. Example

The example program below calculates the zero of $e^{-x}-x$ within the interval [0, 1] to approximately 5 decimal places.

8.1. Program Text

```
/* nag_zero_cont_func_bd(c05adc) Example Program
 *
 * Copyright 1991 Numerical Algorithms Group.
 *
 * Mark 2, 1991.
 */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagc05.h>
#ifdef NAG_PROTO
static double f(double x);
#else
static double f();
```

```
#endif
     main()
     {
       double a, b;
       double x, ftol, xtol;
       static NagError fail;
       Vprintf("c05adc Example Program Results\n");
       a = 0.0;b = 1.0;xtol = 1e-05;ftol = 0.0;c05adc(a, b, &x, f, xtol, ftol, &fail);
       if (fail.code == NE_NOERROR)
         {
           Vprintf("Zero = \sqrt{12.5f \n\cdot x};exit(EXIT_SUCCESS);
         }
       else
         {
           Vprintf("%s\n", fail.message);
            if (fail.code == NE_XTOL_TOO_SMALL ||
                fail.code == NE_PROBABLE_POLE)
             Vprintf("Final point = \sqrt[6]{12.5f \cdot x};
           exit(EXIT_FAILURE);
         }
     }
     #ifdef NAG_PROTO
     static double f(double x)
     #else
          static double f(x)
          double x;
     #endif
     {
      return exp(-x)-x;
     \mathbf{r}8.2. Program Data
```
None.

8.3. Program Results

c05adc Example Program Results 0.56714